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The equations governing the deceleration and oscillation of a blunt body moving along
a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic
solution of this equation describes the oscillation amplitude growth and frequency dila-
tion with time for a statically stable decelerating body with constant pitch damping. The
oscillation histories for several constant pitch damping values, predicted by the solution
of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) tra-
Jjectory simulations. The simulations use simplified aerodynamic coefficients matching the
Euler-Cauchy approximations. Agreement between the model predictions and simulation
results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations
and ballistic range data to identify static stability and pitch damping coefficients. The
model is shown to closely fit through the data points and capture the behavior of the blunt
body observed in simulation and experiment. The extracted coefficients are in reasonable
agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondi-
mensional version of the Euler-Cauchy equation is presented and shown to be a simple and
effective tool for designing dynamically scaled experiments for decelerating blunt capsule
flight.

Nomenclature
A Angle-of-attack constant Ny Ratio of test I to full-scale I
Ca Axial force coefficient N, Ratio of test m to full-scale m
Cp Drag force coefficient N, Ratio of test p to full-scale p
CL Lift force coefficient S Reference area = Zd?
Cm, Pitching moment coefficient s Speed of sound
Ciny + Cng Pitch damping coefficient t Time
Cn Normal force coefficient Greek
d Diameter o Angle-of-attack
Fy Dimensional axial force y Flight path angle
1 Moment of inertia ) Phase shift constant
M Mach number 0 Pitch angle
m mass I Euler-Cauchy damping constant
Ny Ratio of test model d to full-scale d v Euler-Cauchy frequency constant
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Greek (cont’d) Subscripts

£ Linear damping coefficient 1,2 Time indices

p Density f Final conditions
) Ballistic range yaw angle i Initial conditions
w Oscillation frequency (rad/s) 0 Constant velocity

I. Introduction

Ballistic range testing is a useful tool for identifying the the dynamic aerodynamic characteristics of blunt
bodies and other projectiles. This test technique has the benefit of testing free flying models with no sting
effects, often at greater Reynolds numbers than are possible with wind tunnels. However, the data reduction
of ballistic range test results is more complicated and time consuming than forced oscillation wind tunnel
techniques. To obtain accurate damping derivatives, expert analysts can take months fitting trajectory
simulations through the relatively few data points. Often, it is difficult to get even qualitative information
without this detailed analysis, due to the rapid variation of several parameters over the course of a ballistic
range shot. Blunt bodies in a ballistic range test decelerate rapidly, so dynamic pressure falls rapidly. This
drop in dynamic pressure results in an increase in oscillation amplitude that is on the same order as the
growth or decay due to the dynamic stability of a body. Therefore, it is very difficult to infer any information
about the dynamic stability of a model from raw ballistic range data. For the quick interpretation of ballistic
range data as well as for designing ballistic range test matrices (the set of initial velocities and oscillation
amplitudes), it is desirable to have a simple model that captures oscillation growth due to deceleration and
dynamic stability, as well as the dilation of the oscillation frequency due to decreasing dynamic pressure.
Chapman and Yates!' described how blunt capsules with nonlinear dynamic instabilities (undamped at low
angles and damped at large angles) will reach a limit cycle, oscillating at an amplitude where the damped
and undamped attitudes are in equilibrium. However, for a rapidly decelerating object, the dynamic pressure
decrease masks this equilibrium and it is difficult to identify such a limit cycle without detailed nonlinear
analysis.

The model presented here predicts the oscillation amplitude growth of a decelerating body. An example
of this predictive capability is presented for a typical blunt-body, ballistic-range test case, demonstrating the
sensitivity to pitch damping values. These model predictions are compared to 6-DoF trajectory simulations
that use simplified aerodynamics, matching the approximations made to develop the analytic solution. Then,
the model is fit through a 6-DoF trajectory simulation of the same scenario showing that the behavior
predicted by the simple model is in excellent agreement with a higher fidelity simulation using nonlinear
aerodynamics. The model is also used to extract aerodynamic coefficients by fitting the Euler-Cauchy curve
through raw ballistic range data collected for the Mars Exploration Rover (MER) entry capsule. Finally,
the governing equations are nondimensionalized to illustrate how matching ratios of a few key parameters
with the same ratios at flight conditions will permit the testing of dynamically scaled models that behave
very similarly to full-scale vehicles. The model proves to be useful in predicting oscillation behavior even for
trajectories that, in general, violate the assumptions that were required for an analytic solution.

II. Equations of Motion

The planar equations of motion for a planetary probe or ballistic range model are given by Equations 1
through 3. Equation 1 describes the sum of the forces acting on the body. Equation 2 describes the change in
flight path angle, v, due to lift, gravity and centrifugal forces as the body curves around a planet. Equation
3 describes the rotational accelerations due to the sum of the moments, static and dynamic, acting on the
vehicle. These equations are valid for a low lift-to-drag vehicle at small angles-of-attack (o approximately less
than 30°). It is assumed that lift and pitching moment vary linearly with angle-of-attack, drag is constant
with angle-of-attack and all aerodynamic coefficients are invariant with velocity/Mach number.

_pVQSCD

2m

V= — gsiny, (1)
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From these equations, Chapman and Yates' derived a moment equation describing the oscillation ampli-
tude growth of a blunt capsule traveling in a plane defined by the velocity and gravity vectors with distance
as the independent variable. The equations developed here will keep time as the independent variable.
Chapman and Yates made several simplifying assumptions valid for ballistic range testing (and segments of
planetary entry) that will again be made in this analysis. These assumptions will be noted as the equa-
tions are developed. First, it is assumed the vehicle is far from terminal velocity or is traveling at a small
flight path angle. This means the gravity term in Equation 1 is small and may be neglected. The second
derivative of Equation 4 with respect to time is now substituted into Equation 3, using the first derivative
of Equation 2 for 4. The gravity turn and centrifugal acceleration contributions to % are small compared to
the contribution due to lift and are therefore neglected. Equation 3 becomes:

2 2 5 .
G+ (—pVS) CoCnat+ 50, o= PV 5 <Cm bd ¢, 94 —i—Cmaa) (5)

om om 21 19y sy

The second term on the LHS of Equation 5, with the assumption of linear variation of Cy, with «, modifies
the frequency of oscillation of the system slightly, but is small in this application and can be neglected. The
pitch rate, 6, can be expressed in terms of & and ¥ using the first derivative of Equation 4. The first term
on the RHS of Equation 5 is then:

Ciny e = O (e 25000 4 2 (s~ ) eovna) ©

9V 2V Tam " 2\V2 R

All of the 4 terms in Equation 6 are small and may be neglected as well. Equation 5 then becomes:

. md? . pV28d
Oé——m <—OLQ+7(Cmq‘i‘cmd))o‘_TOmaa—O (7)

Finally, the following small angle-of-attack, low lift-to-drag (C'n < C4) approximations are made:

Cp=Cpcosa+ Cnysina~Cygcosa~Cy

OL:ONCOSOZ—OASinOz%—OAOz (8)
Cr,~—-Cay
and Equation 7 becomes:
. pVSs md? . pV3Sd B
a-=— (C’A—l— 57 (Cmy + Cimy) | i Cp,a=0 9)

Equation 9 is of the same form as that developed by Chapman and Yates, expressed as a function of time
rather than distance. Assuming a constant velocity over the solution domain, this Equation is of the form:

&+ 26a+wia =0 (10)

and has a solution of the form:
a = Ae % cos(wot + 0) (11)

The damping exponent, £, in this equation is:
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For blunt body problems, the coefficient of the damping term is much smaller than that of the static moment
term (£2 < w?). Therefore, the frequency of oscillation, w,, is:

V25d
Y 7 Cim. (13)

The constants, A and ¢ are determined from boundary conditions of a given problem.

Equation 11 predicts that a blunt body will oscillate at a frequency proportional to the square root of
the freestream dynamic pressure and static stability, and inversely proportional to the square root of the
body’s moment-of-inertia about the pitch axis. The equation also predicts that the angle-of-attack of a
body grows or decays exponentially, due to its dynamic stability (for a constant velocity assumption, the Cy4
effect on damping should be neglected). Now, as this solution is for a constant velocity, it is not adequate
for predicting or interpreting the behavior in a ballistic range. Accounting for the capsule deceleration, the
functional form of the solution of the moment equation changes from that of Equation 11. An equation
appropriate for a decelerating body will be developed here. Assuming a constant drag force and freestream
density, the time to slow from one velocity to another is found by integrating the axial force over the time
interval. For a body that is decelerating significantly or where the gravity vector is not closely aligned with
the direction of travel, the axial force equation simply equates the aerodynamic forces with the deceleration
of the body:

d2
T (CA+(Cmq+Cmd)m ) (12)

av 1 1
F,=m—= 2 ~ —pV? 14
m o 2pV SCp 2pV SCxy (14)
t v
2m av
dt = —— — 15
/0 pSC 4 /% V2 (15)
‘ 2m 1 1 (16)
CpSCa \V
For times long after the initial conditions and assuming the initial velocity was very large,
1 1
— < = 17
7 <y (17)

Equation 16 shows velocity to vary proportionally to the inverse of time:

2m

V= 18
pSCat (18)

Substituting this expression for velocity into Equation 9 yields:

md? (Cm, + Crny) 2m2dC,,
t?a— (1 4 Lt — ——5~a=0 19
@ <+21 Ca )O‘ ps1c2 @ (19)
Equation 19 is of the form:

26 + 26t + w?a =0 (20)

This is the Euler-Cauchy equation.? For the aerodynamic coefficients and mass properties of blunt capsules,
the characteristic equation of Equation 20 has complex conjugate roots. Therefore this differential equation
has a solution of the form:

a = At* cos(vInt + 0) (21)

Where A is a constant determined by the angle-of-attack oscillation amplitude at the boundary conditions
and the constant § is a phase lag determined from the boundary conditions. The coefficients 1 and v are
determined by solving for the roots of the characteristic equation of Equation 20. The coefficient, y is:
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41C 4

For a body with C,, + Cp,, = 0, oscillations will grow in direct proportion to time (amp o t) as
velocity decreases logarithmically. The C4 contribution (an approximation of —C7,_) to the damping term
in Equation 9 causes oscillation amplitude growth even without a contribution from the capsule dynamic
stability coeflicient.

The coeflicient v is :

= +1 (22)

8m2Ch,,,

B mpdIC% (23)

v=y|u?
As with the constant velocity version, for the aerodynamics of typical blunt bodies, the damping term in
Equation 20 is very small compared to the static stability term (£? < w?). Equation 23 then becomes:

L— | 8m2Cyn, 3 2m2dC,,, (24)
N mpdIC4 pSCAI

This coefficient, v is a frequency of oscillation, multiplied by the natural log of time rather than simply
time as in Equation 11. At first glance, the frequency does not look to have the same dependence on
dynamic pressure as the constant velocity frequency, w, (Equation 13). However, the coefficient, v, can be
re-expressed to provide a more intuitive comparison with this constant velocity frequency. For this discussion,
a constant reference velocity, V,, is introduced that corresponds to the constant velocity frequency, w,. For
a decelerating body let this reference velocity also correspond to the velocity at which the body is traveling
at a particular time, ¢,.

Recalling the relation for velocity (Equation 18), here set to the reference velocity, V,, at time, ¢,, we
have:

4m?
VI = —c5am 25
oo p2820% ( )
Substituting this version of the velocity equation into Equation 24 yields:
[ pV28dC,,
= - ° 22 = olo
14 o7 ° w
The Euler-Cauchy solution then becomes:
a = At* cos(woto Int + 0) (26)

Now, a comparison of the oscillation frequencies of a constant velocity body at V, and a decelerating
body as it passes through V, can be made. To simplify the frequency comparison, it is assumed that the
damping for each system is such that oscillation amplitude is constant with time (£ = 0, and p = 0). With
this simplification, the second derivatives of equations 11 and 26 divided by the original equations yield the
square of the oscillation frequencies. For Equation 11 with no damping, we have:

\/—7% = w, (27)

& to

L= wor, (28)
Note that Equations 27 and 28 are exact versions of Equations 9 and 19 with no damping. As a decelerating
body passes through a given velocity (at t = t,), it will match exactly the frequency of a constant velocity
body (e.g., a free-to-oscillate wind tunnel model) with the same mass properties and in the same flow
conditions. Prior to that time, the decelerating body will oscillate at a higher frequency, and later the

frequency will decrease. This is consistent with the decrease in dynamic pressure for a decelerating body.

and for Equation 26 with no damping :
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ITII. Application

The Euler-Cauchy model describing the oscillation history of a decelerating object can be used in a
number of applications. This section will illustrate some examples. First, the predictive capability will be
shown against a simplified trajectory simulation to verify the model with a validated simulation code. Next
the model will be fit to two high-fidelity data sets; a full 6-DoF simulation and ballistic range experimental
data. These fits demonstrate the model can be used for preliminary parameter identification to determine
constant coefficient estimates of nonlinear aerodynamics. Finally, a nondimensionalized version of the Euler-
Cauchy equation will be used to design a dynamically scaled test article to match the dynamic behavior of
a full-scale vehicle at a particular design point.

To solve Equation 21, the coefficients, A and ¢ must be determined. Boundary conditions at the beginning
and end points of the desired solution space must be provided. The assumption that velocity at time ¢t = 0
is very large permitted the moment equation to be cast in a form that has an analytical solution. However,
it also requires that the equation be solved on a specific timeline. Equation 16 can be used to determine
the times at which the body is traveling at specific velocities along this timeline. The following example
illustrates this procedure.

A. Euler-Cauchy Model of a Ballistic Range Case

To demonstrate the behavior predicted by Equation 21, the oscillation amplitude history is calculated for a
simple ballistic range case. The mass properties and aerodynamics will be those of a Mars Exploration Rover
(MER) model (a 70°degree sphere-cone blunt body with a truncated conic backshell®), tested at sea level
conditions. To determine the coefficients of Equation 21, a timeline must be established that is consistent with
the initial velocity assumption in Equation 17 that yielded the Euler-Cauchy form of the moment equation
(Eq. 19). For such a timeline, it can be assumed that velocity is infinite at time ¢ = 0. This would imply
infinite dynamic pressure (and therefore drag) and other violations of the physics of the problem, but these
nonphysical conditions can be avoided by simply ensuring they are outside of the solution domain. Equation
16 can be used to determine the time after ¢ = 0, when the capsule reaches the first point in the solution
space, t(V = V1), and any time up to the end boundary condition. For this example the initial boundary
condition is Mach = 2.5 (V4 =858 m/s) and the end boundary condition is Mach=1 (Vo2 = 343 m/s). The
times at which these conditions occur are determined by:

. 2m b 2m
T pSCaViT 7T pSCaVe
A plot of Mach number versus time is shown in Figure 1. Substituting the vehicle-specific constants into

Equations 22 and 24 yields values for p and v. With ¢; established, Equation 21 and its first derivative at
t= tla

31 (29)

dy = Apth " cos(vInty +6) — Avtt ' sin(vInt; +8) =0 (30)
can be rearranged to solve for the remaining constants, A and J:

5 =tan~? (g) —vinty (31)

~ tcos(vinty + 6)

(32)

Table 1 lists the boundary conditions, freestream conditions, model mass properties and aerodynamic
characteristics for Equation 21 for the MER ballistic range test.> Figure 2 shows a plot of Equation 21
with all of the coefficients listed in Table 1, from times ¢ = t; to ¢t = t. The different curves show the
sensitivity of amplitude growth to the pitch damping coeflicient, C,,,, + Cp,, . The coefficients for Equation
21 for each curve are listed in Table 2. The curves show the variation in oscillation frequency is due only to
the reduction in dynamic pressure as the capsule decelerates. The amplitude growth decreases as the pitch
damping coefficient varies from positive to negative values. A pitch damping value of -0.342 is required for
no amplitude growth for this example.
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Table 1. Example Ballistic Range Parameters

Boundary Conditions ‘ Range/Model Properties Aerodynamics
Wi 858 m/s m 0.584 kg Crn., —0.09 rad~*
7 343 m/s I 155-107% kg-m? Ca 1.58
g 5° d 0.07 m Cmg +Cms;  +0.15,0,-0.15, —.342
Qo 0 rad/s S 0.00385 m? Cn 0.0
ty 0.186 s p 1.20 kg/m3
to 0.466 s
°F
a5F
35F
3
Sk t
2.5 !
= F
2
15F
r tz
i3
05F
0:\\\\l\\\\l\\\\l\\\\l\\\\l
0.1 0.2, 0.3 0.4 0.5
time (s)

Figure 1. Mach number along Euler-Cauchy time domain, taken from Equation 29 with constants from Table
1.
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0.5
1, = 0.466s

1
0.2
=0.186s

Figure 2. Variation of oscillation growth with pitch damping. See Table 2
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Table 2. Coefficients for Figure 2

Cm,, A 7 v 1)
0.150 | 56.009 1.438 49.060 0.752
0.000 | 26.824 1.000 49.049 0.725
—0.150 | 12.848 0.562 49.042 0.704
—0.342 | 5.008 0.000 49.039 0.687

To verify the angle-of-attack histories predicted by Equation 21, three of these cases were simulated in a
6-DoF POST* trajectory simulation and plotted against the analytic solutions. The aerodynamics used in
the POST simulation were simplified to the constant values in Table 1, matching the assumptions made to
derive the analytic solution. The trajectory simulation was run as a full 6-DoF simulation but given initial
conditions consistent with the planar equations and analytical solution (pure pitching motion and constant
aerodynamic coefficients). Figure 3 compares the trajectory simulation results with the oscillation history
predicted by Equation 21 for different constant values of the pitch damping coefficient. Note that there is
almost perfect agreement between prediction and simulation, as would be expected given the simplifying
assumptions used in the simulation.

20
15

10

o (deg)

POST sim., Cmq +Cp;=0
POST sim., Cmq +Cp;, =+0.15
POST sim., C, + C;, =-0.15

-10 " Sk Euler-Cauchy, Cp, + Cn; =0
g e ——— Euler-Cauchy, Cmq +Cp; =+0.15
————— Euler-Cauchy, Cy, + Cp, =-0.15
-15 d
20 P P P |
0.2 0.3 0.4 0.5
time (s)

Figure 3. Comparison of Euler-Cauchy angle-of-attack solutions with simplified POST trajectory simulations.

B. Curve Fits to Data

It has been established that the Euler-Cauchy solution predicts the amplitude growth of a decelerating object
with several simplifying assumptions. Now this model is fit to a nonlinear simulation and raw experimental
data to illustrate how well the simple model agrees with these systems driven by more complex aerodynamics.
The constant coefficients identified with the curve fitting process will be compared to the nonlinear values.
This comparison will assess the applicability of the Euler-Cauchy model for modeling more realistic scenarios,
both for the prediction of oscillation behavior, as well as first order parameter identification from experimental
data.

Figures 4 and 6 show curve fits of Equation 21 through nonlinear simulation and experimental data. The
constants, A, 4, v and § in Equation 21 were extracted for both cases using a MATLAB curve fitting routine.
Identifying the aerodynamic coefficients, Ca, Cpn, + Cpn,,, and Cyy,, from the Euler-Cauchy constants is a two
step process. First, the axial force coefficient is determined evaluating Equation 15 over the solution domain:
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2m 1 1
O — _ 33
4 pS(ta —t1) <V2 Vl) (33)

Next, Equations 22 and 24 can be used to identify the pitch damping and static stability coefficients:

41Cy
Cmy +Cms = (n—1) md2 (34)
2 dl 2
Cma = _M (35)

8m?2
Figure 4 shows a comparison of the Euler-Cauchy equation with a POST simulation of the MER ballistic
range model. Even though the MER simulation uses nonlinear pitch damping, axial force and static stability
data that varies significantly with angle-of-attack and Mach number, comparison is excellent. This shows
that an “average” constant pitch damping value may replace a nonlinear pitch damping curve to provide a
lower fidelity, but quantitative assessment of a capsule’s dynamic stability.

20

o POST Simulation, M;=3.5, M=1.5
o=At"cos(vInt+3) fit to simulaton

15

10

o (deg)

-10

-15

TR N [T T N TN S T ANV N IR N
0.15 0.2 0.25 0.3 0.35
time (sec)

-20
0

&
ST T T T T T T T T

Figure 4. MATLAB curve fit through nonlinear simulation of MER ballistic range shot.

Figure 5 shows a comparison of the extracted constant coefficient values versus the aerodynamic coef-
ficients in the MER aerodynamic database.® The extracted constant coefficients fall within the nonlinear
axial and pitch damping coefficients and appear to be reasonable mean values across the simulated Mach
and angle-of-attack range. The most notable discrepancy is in static stability coefficient. This disagreement
arises from the small angle assumption, made in the Euler-Cauchy development, that permits constant values
of C4, Cp and —Cp,_to be interchanged (and Cy = 0). Calculating C4 from nonlinear simulation results
using Equation 33 yields a value smaller than the mean of the nonlinear value of C'4 as it does not account for
the fact that the capsule is oscillating and C4 is directed at an angle relative to the direction of deceleration.
This smaller axial force coefficient, when used in Equations 34 and 35 yields slightly smaller damping and
static stability coefficients. As C,,, is proportional to C% in Equation 35, small errors in axial force are
amplified in the static stability. Larger oscillation amplitudes result in larger errors in the parameter identi-
fication. Overall, given all of the assumptions and simplifications of the Euler-Cauchy model, agreement is
quite good and the model can be used for preliminary parameter identification.

Figure 6 shows a similar fit through raw data from the MER ballistic range test program.® Refer back
to Table 1 for model mass properties. Note that the raw angles measured in the ballistic range are not
angle-of-attack and sideslip, but Euler angles in the range coordinate system. For these ballistic range shots
where flight path angle is changing very little and oscillations are predominantly in one plane, the raw
angles and the Euler-Cauchy prediction of oscillation growth may be compared for preliminary parameter
identification. The coefficients identified from this curve fitting are also tabulated in Figure 6. Again,
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Figure 5. Comparison of MER aerodynamics with coefficients obtained by fitting the Euler-Cauchy solution

through a nonlinear simulation.

a close fit through the data suggests that this simple equation captures the observed behavior and the
important parameters influencing the dynamics of ballistic range model flight at moderate angles-of-attack.

(c) Static Stability

The parameters extracted are also in reasonable agreement with the MER aerodynamic database.

Note that this method of parameter identification is only applicable to experimental data that is close to
pure pitching motion in one plane. Three-dimensional motions such as coning or oscillations coupled with
a significant spin rate have more complex oscillation histories in pitch and yaw, therefore requiring a full

6-DoF reconstruction.
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20 (0] MER shot 34, M, =3.03, M, =1.01
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Figure 6. MATLAB curve fit through MER ballistic range experimental data (shot 34).

C. Scaling Analysis

The equations developed can be nondimensionalized for use in sizing scale models of flight vehicles for testing
in ballistic range or scaled flight testing. Velocity and time are nondimensionalized as:

_ Vv _ s
V=—=M t=1t= 36
— = M, . (36)

Where s is the local sound speed. Time is nondimensionalized by the time it takes sound to travel a
meaningful distance, here the reference length of the decelerating body. Substituting these relations into
Equation 14 yields:
7 pd? 5 dM
——COyM* = —
8 m di
Likewise, the moment equation for a decelerating body (Eq. 19) which describes the oscillatory behavior of
a decelerating body can be nondimensionalized:

2 2
{2&_<1 1md Cmd>t.__§md ﬂc’”ﬂ@:o

(37)

+ - 38
2 I Cyu (38)
Recalling the reference area S is equal to 7d?/4, note that nondimensionalizing the moment equation does
not change its form and Equations 38 and 19 are identical. Therefore Equation 21 describes the oscillation
behavior versus nondimensionalized time as well:

a=a= At"cos(vInt + 9) (39)

Equations 37 and 38 contain the ratios, deQ and p%g. To test a model that is a dynamically scaled to full-

scale flight conditions in the nondimensional time frame, and assuming the same aerodynamic coefficients,
all that is required is to match these two parameters. Here the ratios of mass, diameter, moment-of-inertia
and density are defined:

Mtest dtest Itest Ptest
Ny = ; Nd = ; NI = ; Np =
Mflight dflight Ij’light Pflight

Then, the scaling laws for density and moment-of-inertia can be written:
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N Ny
~ s =L N N2
N,N3 N,,N2

By matching these relations for a full size vehicle and a scaled model, Equations 37 and 38 are identical.
Mitcheltree® showed that these parameters are important for the dynamic scaling of bodies in subsonic,
terminal descent testing. It is interesting that the same parameters fall out of equations for much higher ve-
locity, where the Froude number and Mach number cannot be matched simultaneously. Here the assumptions
regarding the trajectory (deceleration is significant or flight path angle is small) eliminate the requirement
that Froude number be matched. Note that this analysis assumes identical aerodynamic coefficients and is
limited to two degrees of freedom (angle-of-attack and velocity in the downstream direction). This analy-
sis assumes constant density and does not account for trajectory effects caused by flight in a gravity field.
However, the following example will show that dynamic scaling using Equation 38 can yield a useful scaled
model design even when the constant density and trajectory flight-path-angle assumptions are violated.

The feasibility of a dynamically scaled test that replicates a segment of a high-altitude abort scenario
was evaluated. To do this, a 6-DoF trajectory simulation of an Apollo capsule (a spherically blunted body
with a conic backshell) was calculated from Mach = 4 down to Mach = 1. The static aerodynamics and
capsule properties for this simulation were taken from the Apollo Block I aerodynamic database.” The pitch
damping coefficient, C,, + Cp,, was set at a constant value of +0.15. Then, a model was scaled to test
at sea level, selecting a diameter, mass and moment of inertia about the pitch axis, using Equation 38 and
the matching the ratios in Equation 40. For this sub-scale model, A 6-DoF trajectory was calculated, using
identical aerodynamics for comparison. In the Apollo simulation this segment of the trajectory corresponds
with a decrease in altitude from 26.7km down to 17.6km. The scaled model was assumed to remain at sea
level. Tables 3 and 4 list the freestream and model parameters for the full-scale and sub-scale configurations.

=1 (40)

Table 3. Dynamic Scaling Freestream Conditions

P (kg/m?)  py_y (kg/m®)  py_y (kg/m®) 7,y (deg) vy, (deg) 7, (deg)
Vehicle Scaled point Scaled point
Apollo 0.030 0.067 0.130 —28.9 —-35.1 —51.4
Scaled 1.20 1.20 1.20 0.0 —0.35 —1.22

Table 4. Dynamic Scaling Model Parameters

Vehicle ‘ m (kg) d (m) I (kg-m?)
Apollo | 4989.5 3.91 5917.9
Scaled 5.04 0.15 0.00879

Figure 7 shows a plot of angle-of-attack versus time for the full-scale and sub-scale trajectories. The
scaled model, flying at sea level decelerates from Mach 4 to Mach 1 in less than a second, while the full-scale
model takes approximately 27 seconds to decelerate. Against nondimensional time, however, the behavior
of the vehicles is very similar.

Figure 8 shows a POST simulation of the oscillation history, against nondimensional time, of a ballistic
range model, shot at sea level. The mass properties were selected to achieve a dynamically scaled model
(satisfying the relations in Equation 40) of the full-scale Apollo capsule at Mach = 2.0 along a full-scale
trajectory. This history is plotted against a POST simulation of the corresponding full-scale Apollo capsule
oscillation history. Even though the variation of density with time is not matched, and the flight-path-angle
histories vary, the scaled case behaves in a manner very similar to the full-scale capsule versus nondimensional
time. The nondimensional time that corresponds with Mach = 2.0 for these cases is ¢ = 1135. In Figure 8a at
this time, both cases fall into very close agreement. The density variation along the Apollo trajectory results
in a dilation of the nondimensional timeline. This dilation results in a mismatch between Mach number and
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Figure 7. Comparison of full-scale Apollo flight with dynamically scaled model, M; = 4.0, My = 1.0.
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Figure 8. Oscillation growth of a full-scale Apollo and dynamically scaled capsules versus nondimensional time
and velocity.

nondimensional time far from the scaling design point. The density variation also results in a deviation of
the dynamic pressure history along the trajectory from that of the constant density sub-scale case. This
accounts for the small deviation in amplitude growth and oscillation frequency between the two cases. Prior
to the design point, the full-scale model is decelerating less rapidly and therefore the rate of oscillation
amplitude growth is less. This is due to the lower density through which the capsule is traveling prior to the
design point. After decelerating to speeds below Mach 2.0, the amplitude of the full-scale capsule oscillations
grows slightly faster than the sub-scale model. This is consistent with the full-scale model flying deeper in
atmosphere where density is greater than at the design point. Overall, these differences are small and the
general behavior of the two vehicles is very similar. The oscillation frequencies and amplitude histories
suggest that sub-scale testing of a dynamically scaled model can be used to obtain aerodynamics data from
trajectories that very closely match those expected at full scale.
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IV. Conclusion

The Euler-Cauchy equation has been shown to accurately describe the oscillation and deceleration char-
acteristics of statically stable, low L/D objects with constant pitch damping. The simple analytic solution
to the Euler-Cauchy equation provides a useful tool to design ballistic range test matrices. Using simple
curve fitting routines, the function can be used to obtain useful preliminary assessments of ballistic range
test data. The constant coefficients extracted from MER test data were shown to match very well with the
full nonlinear MER aerodynamic database. The nondimensional form of the Euler-Cauchy equation provides
a useful tool for dynamically scaling test models to match flight conditions. Even for a full-scale trajectory
that has greatly varying density and flight-path-angle, this simple equation can provide mass properties for
a scaled capsule that will closely approximate the full-scale flight behavior at different freestream conditions.
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